1 |
Methylmercury promotes oxidative stress and autophagy in rat cerebral cortex: Involvement of PI3K/AKT/mTOR or AMPK/TSC2/mTOR pathways and attenuation by N-acetyl-L-cysteine |
|
|
| Yanfeng Wei, Linlin Ni, Jingjing Pan, Xiaoyang Li, Yu Deng, Bin Xu, Tianyao Yang, Jingyi Sun, Wei Liu |
|
| Neurotoxicology and Teratology. 2023; 95: 107137 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
2 |
Genetic variations in OLR1 gene associated with PCOS and atherosclerotic risk factors |
|
|
| Serap Baydur Sahin, Ihsan Nalkiran, Teslime Ayaz, Ali Irfan Guzel, Tugba Eldes, Tugba Calapoglu, Hatice Sevim Nalkiran |
|
| Journal of Investigative Medicine. 2023; : 1081558922 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
3 |
Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway |
|
|
| Pingping Sun, Yuemin Zhang, Lilan Sun, Na Sun, Jinguang Wang, Huagang Ma |
|
| BMC Women's Health. 2023; 23(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
4 |
The therapeutic effects and mechanisms of action of resveratrol on polycystic ovary syndrome: A comprehensive systematic review of clinical, animal and in vitro studies |
|
|
| Arash Karimi, Helda Tutunchi, Fatemeh Naeini, Mahdi Vajdi, Majid Mobasseri, Farzad Najafipour |
|
| Clinical and Experimental Pharmacology and Physiology. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
5 |
Nasturtium officinale
L. and metformin alleviate the estradiol -induced polycystic ovary syndrome with synergistic effects through modulation of Bax/Bcl-2/p53/caspase-3 signaling pathway and anti-inflammatory and anti-oxidative ef |
|
|
| Dawei Cui, Zhengzheng Xu, Shengjie Qiu, Yuxin Sun |
|
| Journal of Food Biochemistry. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
6 |
Exploring the Mechanism of Wenshen Huatan Quyu Decotion for PCOS Based on Network Pharmacology and Molecular Docking Verification |
|
|
| Xin Guo, Yunyi Xu, Juan Sun, Qianqian Wang, Haibo Kong, Zixing Zhong, Muhammad Muddassir Ali |
|
| Stem Cells International. 2022; 2022: 1 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
7 |
The Effect of Hydroalcoholic Calendula Officinalis Extract on Androgen-Induced Polycystic Ovary Syndrome Model in Female Rat |
|
|
| Fatemeh Gharanjik, Manzar Banoo Shojaeifard, Narges Karbalaei, Marzieh Nemati, Flavia Prodam |
|
| BioMed Research International. 2022; 2022: 1 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
8 |
GIMAP7 induces oxidative stress and apoptosis of ovarian granulosa cells in polycystic ovary syndrome by inhibiting sonic hedgehog signalling pathway |
|
|
| Anran Xu, Yuanyuan Fan, Song Liu, Lianbing Sheng, Yanyan Sun, Huijun Yang |
|
| Journal of Ovarian Research. 2022; 15(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
9 |
The role of Sirtuin 1 in the pathophysiology of polycystic ovary syndrome |
|
|
| Mali Wu, Jie Zhang, Ran Gu, Fangfang Dai, Dongyong Yang, Yajing Zheng, Wei Tan, Yifan Jia, Bingshu Li, Yanxiang Cheng |
|
| European Journal of Medical Research. 2022; 27(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
10 |
Therapeutic Effects of Silibinin Against Polycystic Ovary Syndrome Induced by Letrozole in Rats via Its Potential Anti-Inflammatory and Anti-Oxidant Activities |
|
|
| Bushra Hassan Marouf, Dana Omer Ismaeel, Ali Hussein Hassan, Othman Jalal Ali |
|
| Journal of Inflammation Research. 2022; Volume 15: 5185 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
11 |
Bioactive Extracts of Ziziphus mauritiana Induces Apoptosis in A549 Human
Lung Epithelial Carcinoma Cells through the Generation of Reactive
Oxygen Species |
|
|
| Om Prakash, Shazia Usmani , Amresh Gupta, Asif Jafri , Mohammad Fahad Ullah, Shadma Wahab, Md Arshad, Sudheer Kumar |
|
| Current Cancer Therapy Reviews. 2022; 18(1): 57 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
12 |
Polycystic ovary syndrome and obesity: clinical aspects and nutritional management |
|
|
| Evelyn FRIAS-TORAL, Eloisa GARCIA-VELASQUEZ, Maria de los ANGELES CARIGNANO, Dolores RODRIGUEZ-VEINTIMILLA, Irene ALVARADO-AGUILERA, Noemi BAUTISTA-LITARDO |
|
| Minerva Endocrinology. 2022; 47(2) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
13 |
Quantitative Proteomics Reveals That a Prognostic Signature of the Endometrium of the Polycystic Ovary Syndrome Women Based on Ferroptosis Proteins |
|
|
| Jian Zhang, Nan Ding, Wenhu Xin, Xin Yang, Fang Wang |
|
| Frontiers in Endocrinology. 2022; 13 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
14 |
Cangfudaotan decoction inhibits mitochondria-dependent apoptosis of granulosa cells in rats with polycystic ovarian syndrome |
|
|
| Xiao-lin Jiang, He Tai, Xuan-si Xiao, Shi-yu Zhang, Shi-chao Cui, Shu-bo Qi, Dan-dan Hu, Li-na Zhang, Jin-song Kuang, Xian-sheng Meng, Shun-min Li |
|
| Frontiers in Endocrinology. 2022; 13 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
15 |
Quercetin and polycystic ovary syndrome |
|
|
| Congshun Ma, Qianru Xiang, Ge Song, Xuefei Wang |
|
| Frontiers in Pharmacology. 2022; 13 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
16 |
Evaluation of Pro/Antioxidant Imbalance in Blood of Women with Polycystic Ovary Syndrome Based on Determination of Oxidized Low-Density Lipoproteins and Ferric Reducing Ability of Plasma Values |
|
|
| Justyna Niepsuj, Grzegorz Franik, Pawel Madej, Agnieszka Piwowar, Anna Bizon |
|
| Biomedicines. 2022; 10(7): 1564 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
17 |
Level of Potassium Is Associated with Saturated Fatty Acids in Cell Membranes and Influences the Activation of the 9 and 13 HODE and 5 HETE Synthesis Pathways in PCOS |
|
|
| Malgorzata Szczuko, Kamila Pokorska-Niewiada, Lidia Kwiatkowska, Jolanta Nawrocka-Rutkowska, Iwona Szydlowska, Maciej Zietek |
|
| Biomedicines. 2022; 10(9): 2244 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
18 |
Oxidative Stress as a Contributor to Insulin Resistance in the Skeletal Muscles of Mice with Polycystic Ovary Syndrome |
|
|
| Qiyang Yao, Xin Zou, Shihe Liu, Haowen Wu, Qiyang Shen, Jihong Kang |
|
| International Journal of Molecular Sciences. 2022; 23(19): 11384 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
19 |
Modulation of the Inflammatory Response in Polycystic Ovary Syndrome (PCOS)—Searching for Epigenetic Factors |
|
|
| Dariusz Szukiewicz, Seweryn Trojanowski, Anna Kociszewska, Grzegorz Szewczyk |
|
| International Journal of Molecular Sciences. 2022; 23(23): 14663 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
20 |
The Activity of Superoxide Dismutase, Its Relationship with the Concentration of Zinc and Copper and the Prevalence of rs2070424 Superoxide Dismutase Gene in Women with Polycystic Ovary Syndrome—Preliminary Study |
|
|
| Anna Bizon, Agata Tchórz, Pawel Madej, Marcin Lesniewski, Mariusz Wójtowicz, Agnieszka Piwowar, Grzegorz Franik |
|
| Journal of Clinical Medicine. 2022; 11(9): 2548 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
21 |
PCOS Physiopathology and Vitamin D Deficiency: Biological Insights and Perspectives for Treatment |
|
|
| Giuseppe Morgante, Ilenia Darino, Amelia Spanň, Stefano Luisi, Alice Luddi, Paola Piomboni, Laura Governini, Vincenzo De Leo |
|
| Journal of Clinical Medicine. 2022; 11(15): 4509 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
22 |
Arsenic, Oxidative Stress and Reproductive System |
|
|
| Felor Zargari, Md. Shiblur Rahaman, Robab KazemPour, Mahbobeh Hajirostamlou |
|
| Journal of Xenobiotics. 2022; 12(3): 214 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
23 |
Assessment of the Parameters of Oxidative Stress Depending on the Metabolic and Anthropometric Status Indicators in Women with PCOS |
|
|
| Jolanta Nawrocka-Rutkowska, Iwona Szydlowska, Katarzyna Jakubowska, Maria Olszewska, Dariusz Chlubek, Aleksandra Ryl, Malgorzata Szczuko, Andrzej Starczewski |
|
| Life. 2022; 12(2): 225 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
24 |
Levels of Trace Elements in Erythrocytes as Endocrine Disruptors in Obese and Nonobese Women with Polycystic Ovary Syndrome |
|
|
| Kamila Pokorska-Niewiada, Agnieszka Brodowska, Jacek Brodowski, Malgorzata Szczuko |
|
| International Journal of Environmental Research and Public Health. 2022; 19(2): 976 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
25 |
Evaluation of insulin resistance and vitamin D levels in patients with polycystic ovary syndrome |
|
|
| Soner CANDER, Pinar SISMAN, Özen ÖZ GÜL |
|
| Turkish Journal of Internal Medicine. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
26 |
Catalpol attenuates polycystic ovarian syndrome by regulating sirtuin 1 mediated NF-?B signaling pathway |
|
|
| Juan Zhao, Yong Tan, Zhe Feng, Yahong Zhou, Feihong Wang, Ge Zhou, Jing Yan, Xiaowei Nie |
|
| Reproductive Biology. 2022; 22(3): 100671 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
27 |
Changes in serum heavy metals in polycystic ovary syndrome and their association with endocrine, lipid-metabolism, inflammatory characteristics and pregnancy outcomes |
|
|
| Chunmei Zhang, Lin Xu, Yue Zhao, Yun Wang |
|
| Reproductive Toxicology. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
28 |
Evaluating effect of acrylamide and ascorbic acid on oxidative stress and apoptosis in ovarian tissue of wistar rat |
|
|
| Amir Masoud Firouzabadi, Maryam Imani, Fatemeh Zakizadeh, Nadia Ghaderi, Fatemeh Zare, Maryam Yadegari, Majid Pourentezari, Farzaneh Fesahat |
|
| Toxicology Reports. 2022; 9: 1580 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
29 |
Vitamin E supplementation improves testosterone, glucose- and lipid-related metabolism in women with polycystic ovary syndrome: a meta-analysis of randomized clinical trials |
|
|
| Sebastián Yalle-Vásquez, Karem Osco-Rosales, Wendy Nieto-Gutierrez, Vicente Benites-Zapata, Faustino R. Pérez-López, Christoper A. Alarcon-Ruiz |
|
| Gynecological Endocrinology. 2022; : 1 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
30 |
Antioxidant supplements relieve insulin resistance but do not improve lipid metabolism in women with polycystic ovary syndrome: a meta-analysis of randomized clinical trials |
|
|
| Ruye Wang, Chenyun Miao, Yun Chen, Ying Zhao, Liuqing Yang, Wei Cheng, Qin Zhang |
|
| Gynecological Endocrinology. 2022; : 1 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
31 |
Long non-coding RNA HLA-F antisense RNA 1 inhibits the maturation of microRNA-613 in polycystic ovary syndrome to promote ovarian granulosa cell proliferation and inhibit cell apoptosis |
|
|
| Xiaohua Li, Laifang Zhu, Yan Luo |
|
| Bioengineered. 2022; 13(5): 12289 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
32 |
Circular RNA circFoxo3 Promotes Granulosa Cell Apoptosis Under Oxidative Stress Through Regulation of FOXO3 Protein |
|
|
| Linjun Chen, Lihua Zhu, Junshun Fang, Ningyuan Zhang, Dong Li, Xiaoqiang Sheng, Jidong Zhou, Shanshan Wang, Jie Wang |
|
| DNA and Cell Biology. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
33 |
Protective effect of C-phycocyanin and apo-phycocyanin subunit on programmed necrosis of
GC
-1 spg cells induced by
H
2
O
2
|
|
|
| Xiaolei Dong, Fanghao Yang, Xiaohui Xu, Feng Zhu, Guoxiang Liu, Fenghua Xu, Guang Chen, Can Cao, Lei Teng, Xiaoxia Li, Lin Wang, Bing Li |
|
| Environmental Toxicology. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
34 |
Bio-enhancement of Soy Isoflavones (Genistein & Daidzein) Using Bacillus coagulans in Letrozole Induced Polycystic Ovarian Syndrome by Regulating Endocrine Hormones in Rats |
|
|
| Jeshica Bulsara, Arun Soni, Pragati Patil, Kripa Halpati, Sonal Desai, Sanjeev Acharya |
|
| Probiotics and Antimicrobial Proteins. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
35 |
Curcumin and Polycystic Ovary Syndrome: a Systematic Review |
|
|
| Sara Shojaei-Zarghani, Roghayeh Molani-Gol, Maryam Rafraf |
|
| Reproductive Sciences. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
36 |
Leptin Gene Polymorphism Rs7799039; G2548A, Metabolic and Oxidative Stress Markers in Polycystic Ovarian Syndrome |
|
|
| Shilpa S Shetty, N. Suchetha Kumari, Pravesh Hegde, Roopa, Suhasini |
|
| Journal of King Saud University - Science. 2022; : 102222 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
37 |
Hyperandrogen-induced polyol pathway flux increase affects ovarian function in polycystic ovary syndrome via excessive oxidative stress |
|
|
| Yi-cheng Wang, Yong-dan Ma, Huan Liu, Zhi-hui Cui, Dan Zhao, Xue-qin Zhang, Li-xue Zhang, Wen-jing Guo, Yun Long, Sha-sha Tu, Dong-zhi Yuan, Jin-hu Zhang, Bing-kun Wang, Liang-zhi Xu, Qiong-yan Shen, Yan Wang, Li Nie, Li-min Yue |
|
| Life Sciences. 2022; : 121224 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
38 |
Inhibition of Nicotinamide adenine dinucleotide phosphate oxidase 4 attenuates cell apoptosis and oxidative stress in a rat model of polycystic ovary syndrome through the activation of Nrf-2/HO-1 signaling pathway |
|
|
| Yan Li, Jia Xu, Lingxia Li, Lu Bai, Yunping Wang, Jianfang Zhang, Haixu Wang |
|
| Molecular and Cellular Endocrinology. 2022; : 111645 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
39 |
Inhibition of visfatin by FK866 mitigates pathogenesis of cystic ovary in letrozole-induced hyperandrogenised mice |
|
|
| Lalrawngbawli Annie,Guruswami Gurusubramanian,Vikas Kumar Roy |
|
| Life Sciences. 2021; 276: 119409 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
40 |
Effect of vitamin D on experimental model of polycystic ovary syndrome in female rats |
|
|
| Basma Abdel Fattah Helal,Ghada Mahmoud Ismail,Salma Elwy Nassar,Abeer Abed Abo Zeid |
|
| Life Sciences. 2021; : 119558 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
41 |
Cigarette smoking and nicotine exposure contributes for aberrant insulin signaling and cardiometabolic disorders |
|
|
| Kanwal Rehman,Kamran Haider,Muhammad Sajid Hamid Akash |
|
| European Journal of Pharmacology. 2021; 909: 174410 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
42 |
Association of Superoxide Dismutase Level in Women with Polycystic Ovary Syndrome |
|
|
| Arshi Talat,P. Satyanarayana,Pallavi Anand |
|
| The Journal of Obstetrics and Gynecology of India. 2021; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
43 |
“Association of Leptin with Polycystic Ovary Syndrome: a Systematic Review and Meta-Analysis” |
|
|
| Mahesh Kumar Seth,Sarthak Gulati,Shreya Gulati,Amit Kumar,Dimple Rawat,Aradhana Kumari,Rohini Sehgal,Rinchen Zangmo,Vivek Dixit,Vivek Premlata,Arti Gulati |
|
| The Journal of Obstetrics and Gynecology of India. 2021; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
44 |
Sestrin2 and Beclin1 levels in Polycystic Ovary Syndrome |
|
|
| Vahid Saeedi,Mona Nourbakhsh,Mitra Nourbakhsh,Ladan Haghighi,Leila Kamalzadeh,Samira Ezzati Mobasser,Maryam Razzaghy-Azar |
|
| Journal of Clinical Laboratory Analysis. 2021; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
45 |
Ovariectomy Improves Metabolic and Oxidative Stress Marker Disruption in Androgenized Rats: Possible Approach to Postmenopausal Polycystic Ovary Syndrome |
|
|
| Lady Katerine Serrano Mujica,Carolina S. Stein,Ligia Gomes Miyazato,Fernanda Valente,Melissa Orlandin Premaor,Alfredo Quites Antoniazzi,Rafael Noal Moresco,Fabio Vasconcellos Comim |
|
| Metabolic Syndrome and Related Disorders. 2021; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
46 |
Female Fertility and the Nutritional Approach: The Most Essential Aspects |
|
|
| Kinga Skoracka,Alicja Ewa Ratajczak,Anna Maria Rychter,Agnieszka Dobrowolska,Iwona Krela-Kazmierczak |
|
| Advances in Nutrition. 2021; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
47 |
Antioxidant status in relation to heavy metals induced oxidative stress in patients with polycystic ovarian syndrome (PCOS) |
|
|
| Manal Abudawood, Hajera Tabassum, Atheer H. Alanazi, Fatmah Almusallam, Feda Aljaser, Mir Naiman Ali, Naif D. Alenzi, Samyah T. Alanazi, Manal A. Alghamdi, Ghadah H. Altoum, Manar A. Alzeer, Majed O. Alotaibi, Arwa Abudawood, Hazem K. Ghneim, Lulu Abdullah Ali Al-Nuaim |
|
| Scientific Reports. 2021; 11(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
48 |
Diet, Nutritional Supplements, and Botanical Medicine in Polycystic Ovary Syndrome |
|
|
| Khara Lucius |
|
| Alternative and Complementary Therapies. 2021; 27(6): 289 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
49 |
Potential environmental toxicant exposure, metabolizing gene variants and risk of PCOS-A systematic review |
|
|
| Priya Sharma,Nisha Bilkhiwal,Pragya Chaturvedi,Sachin Kumar,Preeti Khetarpal |
|
| Reproductive Toxicology. 2021; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
50 |
Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction |
|
|
| Tianhe Li,Tingting Zhang,Huimin Gao,Ruixia Liu,Muqing Gu,Yuxi Yang,Tianyu Cui,Zhongbing Lu,Chenghong Yin |
|
| Redox Biology. 2021; : 101886 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
51 |
The protective effect of sulforaphane against oxidative stress in granulosa cells of patients with polycystic ovary syndrome (PCOS) through activation of AMPK/AKT/NRF2 signaling pathway |
|
|
| Maryam Taheri, Nasim Hayati Roudbari, Fardin Amidi, Kazem Parivar |
|
| Reproductive Biology. 2021; 21(4): 100563 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
52 |
Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome |
|
|
| Siarhei A. Dabravolski,Nikita G. Nikiforov,Ali H. Eid,Ludmila V. Nedosugova,Antonina V. Starodubova,Tatyana V. Popkova,Evgeny E. Bezsonov,Alexander N. Orekhov |
|
| International Journal of Molecular Sciences. 2021; 22(8): 3923 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
53 |
Effect of Nutritional Supplementation on Oxidative Stress and Hormonal and Lipid Profiles in PCOS-Affected Females |
|
|
| Pallavi Dubey,Sireesha Reddy,Sarah Boyd,Christina Bracamontes,Sheralyn Sanchez,Munmun Chattopadhyay,Alok Dwivedi |
|
| Nutrients. 2021; 13(9): 2938 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
54 |
Ovarian Telomerase and Female Fertility |
|
|
| Simon Toupance,Anne-Julie Fattet,Simon N. Thornton,Athanase Benetos,Jean-Louis Guéant,Isabelle Koscinski |
|
| Biomedicines. 2021; 9(7): 842 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
55 |
Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials |
|
|
| Omid Asbaghi,Matin Ghanavati,Damoon Ashtary-Larky,Reza Bagheri,Mahnaz Rezaei Kelishadi,Behzad Nazarian,Michael Nordvall,Alexei Wong,Frédéric Dutheil,Katsuhiko Suzuki,Amirmansour Alavi Naeini |
|
| Antioxidants. 2021; 10(6): 871 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
56 |
Integral assessment of lipoperoxidation processes in women with ovarian hyperandrogenism |
|
|
| L. I. Kolesnikova,O. V. Krusko,L. V. Belenkaya,L. V. Sholokhov,L. A. Grebenkina,N. A. Kurashova,S. I. Kolesnikov |
|
| Bulletin of Siberian Medicine. 2021; 20(1): 67 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
57 |
Berberine Improves the Symptoms of DHEA-Induced PCOS Rats by Regulating Gut Microbiotas and Metabolites |
|
|
| Hao-Ran Shen, Xiao Xu, Dan Ye, Xue-Lian Li |
|
| Gynecologic and Obstetric Investigation. 2021; 86(4): 388 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
58 |
Effect of Acupuncture on Polycystic Ovary Syndrome in Animal Models: A Systematic Review |
|
|
| Yan Li,Lijia Zhang,Jinjin Gao,Jun Yan,Xue Feng,Xiting He,Hong Jin,Xinyu Li,Zhengyi Cui,Junfei Zhao,Fengyi Liu,Xiaowai Liu,Yongfei Liu,Wan Ren,Songjiang Liu,Yong Wang |
|
| Evidence-Based Complementary and Alternative Medicine. 2021; 2021: 1 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
59 |
Association of Prx4, Total Oxidant Status, and Inflammatory Factors with Insulin Resistance in Polycystic Ovary Syndrome |
|
|
| Sahar Mazloomi,Nasrin Sheikh,Marzieh Sanoee Farimani,Shamim Pilehvari,Raffaele Pezzani |
|
| International Journal of Endocrinology. 2021; 2021: 1 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
60 |
The effect of lutein and Urtica dioica extract on in vitro production of embryo and oxidative status in polycystic ovary syndrome in a model of mice |
|
|
| E. Bandariyan,A. Mogheiseh,A. Ahmadi |
|
| BMC Complementary Medicine and Therapies. 2021; 21(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
61 |
Uric acid participating in female reproductive disorders: a review |
|
|
| Junhao Hu,Wenyi Xu,Haiyan Yang,Liangshan Mu |
|
| Reproductive Biology and Endocrinology. 2021; 19(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
62 |
Randomized double blind clinical trial evaluating the Ellagic acid effects on insulin resistance, oxidative stress and sex hormones levels in women with polycystic ovarian syndrome |
|
|
| Mahnaz Kazemi,Fatemeh Lalooha,Mohammadreza Rashidi Nooshabadi,Fariba Dashti,Maria Kavianpour,Hossein Khadem Haghighian |
|
| Journal of Ovarian Research. 2021; 14(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
63 |
Mechanistic and therapeutic insight into the effects of cinnamon in polycystic ovary syndrome: a systematic review |
|
|
| Vahid Maleki,Amir Hossein Faghfouri,Fatemeh Pourteymour Fard Tabrizi,Jalal Moludi,Sevda Saleh-Ghadimi,Hamed Jafari-Vayghan,Shaimaa A. Qaisar |
|
| Journal of Ovarian Research. 2021; 14(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
64 |
Regulatory Functions of L-Carnitine, Acetyl, and Propionyl L-Carnitine in a PCOS Mouse Model: Focus on Antioxidant/Antiglycative Molecular Pathways in the Ovarian Microenvironment |
|
|
| Giovanna Di Emidio,Francesco Rea,Martina Placidi,Giulia Rossi,Domenica Cocciolone,Ashraf Virmani,Guido Macchiarelli,Maria Grazia Palmerini,Anna Maria D’Alessandro,Paolo Giovanni Artini,Carla Tatone |
|
| Antioxidants. 2020; 9(9): 867 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
65 |
Both Matricaria chamomilla and Metformin Extract Improved the Function and Histological Structure of Thyroid Gland in Polycystic Ovary Syndrome Rats through Antioxidant Mechanism |
|
|
| Ahlam Abdulaziz Alahmadi,Areej Ali Alzahrani,Soad Shaker Ali,Bassam Abdulaziz Alahmadi,Rana Ali Arab,Nagla Abd El-Aziz El-Shitany |
|
| Biomolecules. 2020; 10(1): 88 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
66 |
Methylglyoxal-Dependent Glycative Stress and Deregulation of SIRT1 Functional Network in the Ovary of PCOS Mice |
|
|
| Giovanna Di Emidio,Martina Placidi,Francesco Rea,Giulia Rossi,Stefano Falone,Loredana Cristiano,Stefania Nottola,Anna Maria D’Alessandro,Fernanda Amicarelli,Maria Grazia Palmerini,Carla Tatone |
|
| Cells. 2020; 9(1): 209 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
67 |
Effect of healthy lifestyle promotion on anthropometric variables, eating behavior and cardiometabolic risk factors in women with polycystic ovarian syndrome |
|
|
| Latifa Imen Benharrat,Azzedine Senouci,Wassila Benhabib,Khedidja Mekki |
|
| The North African Journal of Food and Nutrition Research. 2020; 4(9): S46 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
68 |
Growth hormone alleviates oxidative stress and improves oocyte quality in Chinese women with polycystic ovary syndrome: a randomized controlled trial |
|
|
| Yan Gong,Shan Luo,Ping Fan,Song Jin,Huili Zhu,Tang Deng,Yi Quan,Wei Huang |
|
| Scientific Reports. 2020; 10(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
69 |
Identification of Variants in Mitochondrial D-Loop and OriL Region and Analysis of Mitochondrial DNA Copy Number in Women with Polycystic Ovary Syndrome |
|
|
| Pallavi Shukla,Srabani Mukherjee,Anushree Patil |
|
| DNA and Cell Biology. 2020; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
70 |
GSTT1 deletion is a risk factor for polycystic ovary syndrome |
|
|
| Maria Manuel Casteleiro Alves,Micaela Almeida,António Hélio Oliani,Luiza Breitenfeld,Ana Cristina Ramalhinho |
|
| Reproductive BioMedicine Online. 2020; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
71 |
Pathophysiological roles of chronic low-grade inflammation mediators in polycystic ovary syndrome |
|
|
| Maryam Rostamtabar,Sedigheh Esmaeilzadeh,Mehdi Tourani,Abolfazl Rahmani,Masoud Baee,Fatemeh Shirafkan,Kiarash Saleki,Sajedeh S. Mirzababayi,Soheil Ebrahimpour,Hamid Reza Nouri |
|
| Journal of Cellular Physiology. 2020; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
72 |
Proteomic sift through serum and endometrium profiles unraveled signature proteins associated with subdued fertility and dampened endometrial receptivity in women with polycystic ovary syndrome |
|
|
| Nadia Rashid,Aruna Nigam,S.K. Jain,Samar Husain Naqvi,Saima Wajid |
|
| Cell and Tissue Research. 2020; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
73 |
Associations Between Serum Magnesium Concentrations and Polycystic Ovary Syndrome Status: a Systematic Review and Meta-analysis |
|
|
| Maedeh Babapour,Hamed Mohammadi,Maryam Kazemi,Amir Hadi,Mahsa Rezazadegan,Gholamreza Askari |
|
| Biological Trace Element Research. 2020; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
74 |
Improvement of anti-Müllerian hormone and oxidative stress through regular exercise in Chinese women with polycystic ovary syndrome |
|
|
| Xia Wu,Heng Wu,Wenjiang Sun,Chen Wang |
|
| Hormones. 2020; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
75 |
Assessing the effect of MitoQ10 and Vitamin D3 on ovarian oxidative stress, steroidogenesis and histomorphology in DHEA induced PCOS mouse model |
|
|
| Gordon Kyei,Aligholi Sobhani,Saeid Nekonam,Maryam Shabani,Fatemeh Ebrahimi,Maryam Qasemi,Elnaz Salahi,Amidi Fardin |
|
| Heliyon. 2020; 6(7): e04279 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
76 |
Nanocurcumin alleviates insulin resistance and pancreatic deficits in polycystic ovary syndrome rats: Insights on PI3K/AkT/mTOR and TNF-a modulations |
|
|
| Nermeen Z. Abuelezz,Marwa E. Shabana,Heidi M. Abdel-Mageed,Laila Rashed,George N.B. Morcos |
|
| Life Sciences. 2020; 256: 118003 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
77 |
The ameliorative effects of marjoram in dehydroepiandrosterone induced polycystic ovary syndrome in rats |
|
|
| Abeer M. Rababaćh,Bayan R. Matani,Mera A. Ababneh |
|
| Life Sciences. 2020; 261: 118353 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
78 |
Polycystic ovarian syndrome novel proteins and significant pathways identified using graph clustering approach |
|
|
| Nor Afiqah-Aleng,Md. Altaf-Ul-Amin,Shigehiko Kanaya,Zeti-Azura Mohamed-Hussein |
|
| Reproductive BioMedicine Online. 2019; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
79 |
Roles of Oxidative Stress in Policystic Ovary Syndrome |
|
|
| Marija Bicanin Ilic,Aleksandra Dimitrijevic,Igor Ilic |
|
| Serbian Journal of Experimental and Clinical Research. 2019; 0(0) |
|
| [Pubmed] [Google Scholar] [DOI] |
|