• Users Online: 255
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Browse Articles Search Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
REVIEW ARTICLE
Year : 2022  |  Volume : 13  |  Issue : 1  |  Page : 117

The effect of zinc supplementation on circulating levels of brain-derived neurotrophic factor (BDNF): A systematic review and meta-analysis of randomized controlled trials


1 Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
2 Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran

Date of Submission21-Aug-2020
Date of Acceptance08-Jan-2021
Date of Web Publication20-Sep-2022

Correspondence Address:
Naheed Aryaeian
Department of Nutrition, School of Health, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijpvm.IJPVM_478_20

Rights and Permissions
  Abstract 


Background: There are randomized controlled trials (RCTs) about the zinc supplementation effect on circulating levels of brain-derived neurotrophic factor (BDNF). However, the findings of these studies are inconsistent. The purpose of this systematic review and meta-analysis was to determine the zinc supplementation effect on BDNF and zinc levels in published RCTs. Methods: We searched PubMed/Medline, Cochrane, Scopus, ISI Web of Science, EMBASE, “Clinicaltrials.gov”, “Cochrane Register of Controlled Trials”, “IRCT” and also key journals up to 2019. RCTs with two intervention (zinc) and control (placebo) groups that evaluated zinc supplementation efficacy on BDNF levels were included. Study heterogeneity was assessed, and then, meta-analysis was performed using the fixed-effects model. Results: Four studies were included in the present secondary analysis. Compared with placebo, zinc supplementation significantly enhanced circulating levels of BDNF [(SMD): 0.31, 95% confidence interval (CI): (0.22, 0.61)] and zinc [(SMD): 0.88, 95% CI: (0.54, 1.22)] with no considerable heterogeneity among the studies [(Q = 3.46; P = 0.32; I2% = 13.4); (Q = 2.01; P = 0, 37; I2% = 0.5), respectively]. Conclusions: Our results propose that zinc supplementation can increase the circulating levels of BDNF and zinc. This study was registered at PROSPERO as CRD42020149513.

Keywords: Brain-derived neurotrophic factor, meta-analysis, randomized controlled trial, systematic review, zinc


How to cite this article:
Agh F, Hasani M, Khazdouz M, Amiri F, Heshmati J, Aryaeian N. The effect of zinc supplementation on circulating levels of brain-derived neurotrophic factor (BDNF): A systematic review and meta-analysis of randomized controlled trials. Int J Prev Med 2022;13:117

How to cite this URL:
Agh F, Hasani M, Khazdouz M, Amiri F, Heshmati J, Aryaeian N. The effect of zinc supplementation on circulating levels of brain-derived neurotrophic factor (BDNF): A systematic review and meta-analysis of randomized controlled trials. Int J Prev Med [serial online] 2022 [cited 2023 Jun 2];13:117. Available from: https://www.ijpvmjournal.net/text.asp?2022/13/1/117/356543




  Introduction Top


Neurodegenerative diseases (NDs) are a major concern in a quickly aging world.[1],[2] Increasing evidence suggests that the change in BDNF expression, peripheral levels and signaling can be involved in NDs pathogenesis.[3],[4]

BDNF is a member of the neurotrophin family.[5] It plays a critical role in neuron survival, such as dorsal root ganglion subpopulation,[6] central serotonergic (5-HT) neurons function,[7] reducing hippocampus neuroinflammation[8], increased synaptic transmission[9] and neurogenesis.[10],[11] According to the rat model of stroke, BDNF can alleviate local inflammation by reducing proinflammatory cytokine and also enhancing anti-inflammatory cytokine.[12]

Decreased BDNF expression has been reported in Alzheimer's disease (AD),[13] Parkinson's disease (PD),[14] dementias,[15] multiple sclerosis (MS)[16] and amyotrophic lateral sclerosis (ALS).[17] Several conditions, including antidepressant medications[18] and anthocyanin supplementation[19] can increase the BDNF gene expression. Its blood concentration can also be enhanced by environmental factors such as exercise,[20] omega-3 fatty acids,[21] resveratrol[22] and zinc supplementation.[23]

Zinc is the second most abundant trace element in the brain.[24] In addition to its anti-inflammatory and antioxidant properties,[25],[26] it can affect BDNF expression and activity.[27] Recently, RCTs have been performed to designate the zinc supplement efficacy on BDNF levels (serum or plasma). However, in these RCTs, the impact of zinc supplementation on BDNF levels was inconsistent and uncertain. So, this meta-analysis was conducted to evaluate the zinc supplement effect on circulating levels of BDNF in adults.


  Methods Top


Protocol

The present systematic review and meta-analysis were accomplished based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline and registered in PROSPERO with the registration number CRD42020149513.

Search strategy

To ensure access to all available relevant evidence, Medical Subject Headings (MeSH) terms were used during the search strategy to recognize scientific literature between 1980 and 2019 within the international databases of PubMed/Medline, Scopus, ISI Web of Science, Cochrane, and EMBASE. Gray literature searching was “Clinicaltrials.gov”, “Cochrane Register of Controlled Trials”, “IRCT”, and also key journals in Nutrition and Neuroscience [Appendix 1]. The search was performed without any restrictions in language. PICO was defined as a structured question describing the Population (healthy adults and adults with any medical disorders), Intervention (oral zinc supplement), Comparison (placebo) and Outcome (BDNF and zinc levels). The search terms were focused on zinc or “zinc supplement”; together with the “BDNF”, and “brain-derived neurotrophic factor”. Relevant mesh terms and main words are added to search queries that are attached in [Appendix 2].

Inclusion and exclusion criteria

Regarding the study design, RCTs with at least two groups, zinc (as an intervention group) and placebo (as a control group) were included. There were no restrictions for the type and doses of zinc supplement, intervention duration, placebo type, BDNF and zinc assessment method; and nor for the participants' health status. We included studies where zinc was applied as a single therapy. The primary outcome was to compare BDNF level changes between an intervention and control group. Serum zinc change in response to zinc supplementation also was a secondary outcome. Duplicate and non-relevant publications were excluded.

Data collection and data extraction

The bibliographic data of searching articles were saved using the Endnote software libraries. Duplicate records were removed. To assess the article's eligibility and relevancy, three-step process titles, abstracts and full text were conducted by two independent researchers. Quality assessment and data extraction were performed with two independent reviewers. Probable differences of opinions were solved by the third researcher. First author, publication year; study place; mean age (year); male and female percentage in each group; participants' health status, type and the dose of zinc supplement; intervention duration; placebo type; BDNF and zinc assessment method, sample size; BDNF and zinc levels change; effect size and article quality were extracted from included articles, and then, recorded in Excel.

Quality assessment of selected studies

Two investigators have independently evaluated the article's methodological quality with the Cochrane Risk of Bias Tool for RCTs.[28] Evaluated criteria of included RCTs generation, allocation concealment, selective reporting, other bias, incomplete outcome data, blinding of participants and personnel, and also outcome assessment. A study that met all criteria received good quality, otherwise, based on the Cochrane tool guidance, it was classified as a fair quality or poor-quality study.

Statistical analysis

The zinc supplementation efficacy on BDNF and zinc levels was assessed as the standard mean difference (SMD) of change in peripheral blood levels and 95% CI which was used to compute the difference of the mean value of the final mean from the baseline for each study group. The pooled SMD was estimated using the fixed effect meta-analysis of the BDNF level without severe heterogeneity between studies in terms of reported effect size, respectively.[29] The heterogeneity amount was computed with I2 statistics, which is an estimation of the total variation across investigations due to heterogeneity.[30] The analyses were conducted using STATA 14 software. P value ≤0.05 was contemplated as statistically significant. Publication bias

Publication bias was assessed by Begg and Egger's test. In the Egger's test, 0.1 was regarded as statistically significant.

Sensitivity analysis

There was not substantial heterogeneity among the included RCTs; therefore, we did not conduct sensitivity analysis.

Subgroup analyses

We did subgroup analyses for intervention duration, supplemental dosage and quality of the included RCTs to assay the zinc supplementation efficacy on BDNF levels.


  Results Top



  Search results Top


Our search strategy resulted in 12,064 records through database searching. The detailed search processes and article selection have been presented in the flow chart [Figure 1]. Finally, four RCTs that meet the present study's inclusion/exclusion criteria were included in the present secondary analysis [Table 1].
Figure 1: Flowchart of the articles selected for meta-analysis of zinc supplementation on circulating levels of BDNF

Click here to view
Table 1: Demographic and clinical characteristics of included randomized controlled trials for meta-analysis of zinc supplementation on circulating levels of BDNF

Click here to view


Specifications of selected studies

The important features of the four RCTs which reported the zinc supplementation efficacy on BDNF levels and other variables have been summarized in [Table 1]. All selected RCTs with publication dates between 2015 and 2019 had been conducted in Iran. In the present meta-analysis, all of the included original studies described serum or plasma BDNF levels as an outcome with a total of 185 participants (intervention group = 92, control group = 93), whereas, Three RCTs, which used a total of 148 participants (intervention group = 72, control group = 76) reported serum zinc alteration as an outcome measure as a result of zinc supplementation.[23],[31],[32] All trials were double-blinded placebo controlled. One RCT included only women[23] and others recruited both men and women.[31],[32],[33] In all four included RCTs, the dietary zinc intake did not change during the intervention period. The participants' age ranged from 18 to 55 years. In all the studies, zinc supplement had been prescribed alone. The daily oral zinc doses in the intervention group of Three RCTs were 30 mg[23],[31],[32] and one study used 25 mg/day.[33] The supplement was administered orally in all research. The intervention period was 84 days in three studies[23],[31],[33] and 90 days in one study.[32] Selected studies had enrolled participants with major depressive disorder,[33] obese or overweight populations,[31] non-proliferative diabetic retinopathy[32] and young women with premenstrual syndrome (PMS).[23]

Quality assessment

According to the Cochrane Risk of Bias Tool for RCTs, two studies were considered as good quality[23],[33] while the other two RCTs were classified as poor quality.[31],[32]

The impact of zinc supplementation on circulating levels of BDNF

Four RCTs reported changes in BDNF levels as research findings. The overall zinc supplement efficacy on BDNF enhancement was statistically significant. The pooled SMD using the fixed effect suggested that zinc supplementation is correlated with a significant increased circulating BDNF levels in the intervention group compared with the placebo group [(SMD): 0.31, 95% ; CI: (0.22, 0.61)] [Table 2] and [Figure 2] with no considerable heterogeneity among studies (Q = 3.46, P = 0.32, I2% = 13.4) [Table 2].
Table 2: Meta-analysis of zinc supplementation on circulating levels of BDNF and zinc

Click here to view
Figure 2: Forest plot of randomized-controlled trials to investigate the effect of zinc supplementation on circulating levels of BDNF

Click here to view


Subgroup analyses

As a result of subgroup analysis, increased peripheral blood BDNF levels were significant at 30 mg supplementary dosages. (Three studies, SMD: 0.41, 95%; CI: 0.08 to 0.61; P < 0.001, I2 = 0.0%) and not significant with 25 mg supplementary dosages (One study, SMD: -0.04, 95% ; CI: -0.69 to 0.6, P = 0.21) [Figure 3].
Figure 3: Forest plot of randomized-controlled trials to investigate the effect of zinc supplementation on circulating levels of BDNF (subgroup analysis by zinc doses).

Click here to view


With regard to intervention duration, both 84 days (Three RCTs, SMD: 0.38, 95%; CI: 0.049 to 0.72; P < 0.001; I2 = 27.7%) and 90 days zinc supplementation (One RCT, SMD: 0.1, 95% CI: 0.022 to 0.61, P < 0.001) elevated BDNF levels [Figure 4].
Figure 4: Forest plot of randomized-controlled trials to investigate the effect of zinc supplementation on circulating levels of BDNF (subgroup analysis by intervention duration)

Click here to view


The study quality did not significantly affect the BDNF levels [(Two poor quality studies, SMD: 0.24, 95% CI: -0.16 to 0.65, P = 0.26; I2% = 21.8); (Two good quality studies, SMD: 0.39, 95% CI: -0.28 to 0.81, P = 0.16; I2% = 48.4)]; while this effect was significant in combining all studies together (SMD: 31, 95% CI: 0.022 to 0.61) [Figure 5].
Figure 5: Forest plot of randomized-controlled trials to investigate the effect of zinc supplementation on circulating levels of BDNF (subgroup analysis by study quality)

Click here to view


The impact of zinc supplementation on serum zinc levels

The zinc supplement influence on serum zinc was analyzed in Three RCTs of four included studies [Figure 6]. Zinc supplementation brought about a significant increase in serum zinc level of intervention group compared with the control group [(SMD): 0.88, 95% CI: (0.54, 1.22)] [Table 2]. There was no obvious heterogeneity in the reviewed articles (Q = 2.01; P = 0, 37; I2% = 0.5) [Table 2].
Figure 6: Forest plot of randomized-controlled trials to investigate the effect of zinc supplementation on serum zinc levels

Click here to view


Publication bias

There was no significant publication bias among RCTs investigating the zinc supplementation impact on BDNF (coefficient = −1.82, standard error = 0.25, P = 0.59, 95% CI = −3.52, 0.36) and zinc levels (coefficient = −1.35, standard error = 0.12, P = 0.6, 95% CI = −2.89, 0.18).


  Discussion Top


Main findings

However, to the best of the author's knowledge, this is the first secondary analysis of RCTs assessing the zinc supplementation efficacy on BDNF levels. The result of our study showed that zinc supplementation is associated with enhanced circulating levels of BDNF. This beneficial effect is in line with growing evidence indicating that the BDNF levels have a significant positive association with serum zinc.[31]

The supportive effect of zinc supplementation on increasing BDNF levels suggests its possible benefit for ND that correlates with low BDNF levels. A large body of evidence indicated BDNF as an important predictive factor for following the beginning, progress and cure of brain disorders due to its main role in brain neurogenesis and neuroplasticity.[5],[34] Previous published systematic reviews and/or meta-analysis have shown that peripheral BDNF levels reduce in bipolar disorder (BD),[35] patients with suicidal behavior,[36] AD,[37] PD,[38] first-episode psychosis (FEP)[39] and schizophrenia.[40] Decreased BDNF levels, in turn, are considerably associated with cognitive impairment in schizophrenia patients.[41]

The effectiveness of various strategies such as exercise,[42] nutritional interventions including high-flavonoid fruit and vegetable intake,[43] dietary antioxidant[44] and zinc supplementation[23] has been shown to elevate BDNF. The precise molecular mechanism by which zinc supplementation enhances BDNF levels is beyond this study, but in short, one of the proposed mechanisms is increasing matrix metalloproteinases 2 (MMP-2) and MMP-9 activation.[45] MMPs activation, in turn, is involved in converting biologically inactive form (pro-BDNF) to mature BDNF.[45] Huang et al. showed that zinc activates tyrosine kinase receptor (TrkB), and its downstream signaling pathways via a BDNF-independent method. TrkB receptor is one of the important signals involved in nervous system function.[46]

The results of Mc Murphy's study to promote healthy aging through targeting hypothalamic BDNF[47] and this study supports the idea that zinc supplementation may be an effective and safe nutritional strategy in delaying and decelerating age-related disorders and having healthy aging.

Three studies, included in our meta-analysis, measured changes in serum zinc levels as a research outcome, which demonstrated that zinc supplement considerably increases serum zinc levels in the intervention group compared with the placebo group.

Strengths and limitations

Our study had several strengths and limitations that should be contemplated when analyzing the results. One of our meta-analysis strengths was the low heterogeneity of the selected studies. There were a limited number of RCTs investigates the zinc supplementation effect on circulating BDNF levels. Inevitably, our results were based on only four available RCTs in this regard with a small sample size. So, more RCTs are necessary to reveal the zinc supplementation effect on BDNF levels conclusively.

In included RCTs, zinc supplement impact on elevating BDNF levels was investigated in healthy persons and individuals with medical problems (premenstrual syndrome, non-proliferative diabetic retinopathy and major depressive disorder) that affect the finding generalizability to people with different health status. All included studies were carried out in Iran, with identical culture, ethnicity and genetic, which may limit the result's generalizability to other communities and ethnicities.

Previous articles indicated both gender and age affect the BDNF levels. BDNF levels are higher in men than women and decrease after the age of 65.[43] In reviewed RCTs, the participants' age range was 18-55. The question that arises is whether these beneficial effects can be expected in people over 65? That needs to be surveyed in the future researches. Thus, future well-designed RCTs with a large sample size, participants' homogeneity in health status and different age groups of men and women are needed to prospectively investigate the zinc supplement impact on increasing BDNF levels as well as supplementation efficacy as adjunct therapeutic strategies for reducing and delaying age-related disorders in an aging population.


  Conclusions Top


This secondary analysis of RCTs illustrated the significant enhancing effect of oral zinc supplementation on peripheral BDNF and zinc levels in adults. Increased circulating levels of BDNF as a result of zinc supplementation suggest that zinc supplementation may be a safe and effective strategy to counteract NDs that are correlated with low BDNF levels.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.







This is a graphical abstract



 
  References Top

1.
Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 2018;10:a033118.  Back to cited text no. 1
    
2.
World Population Ageing 2017 Highlights: The United Nations.  Back to cited text no. 2
    
3.
Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 2009;5:311-22.  Back to cited text no. 3
    
4.
Wang ZH, Wu W, Kang SS, Liu X, Wu Z, Peng J, et al. BDNF inhibits neurodegenerative disease–associated asparaginyl endopeptidase activity via phosphorylation by AKT. JCI Insight 2018;3:e99007. doi: 10.1172/jci.insight. 99007.  Back to cited text no. 4
    
5.
Giacobbo BL, Doorduin J, Klein HC, Dierckx RA, Bromberg E, de Vries EF. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation. Mol Neurobiol 2019;56:3295-312.  Back to cited text no. 5
    
6.
Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995;374:450-3.  Back to cited text no. 6
    
7.
Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci U S A 1999;96:15239-44.  Back to cited text no. 7
    
8.
Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, et al. BDNF alleviates neuroinflammation in the hippocampus of type 1 diabetic mice via blocking the aberrant HMGB1/RAGE/NF-κB pathway. Aging Dis 2019;10:611-25.  Back to cited text no. 8
    
9.
Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995;267:1658-62.  Back to cited text no. 9
    
10.
Zigova T, Pencea V, Wiegand SJ, Luskin MB. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 1998;11:234-45.  Back to cited text no. 10
    
11.
Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 2002;82:1367-75.  Back to cited text no. 11
    
12.
Jiang Y, Wei N, Zhu J, Lu T, Chen Z, Xu G, et al. Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediators Inflamm 2010;2010:372423. doi: 10.1155/2010/372423.  Back to cited text no. 12
    
13.
Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease. Neuron 1991;7:695-702.  Back to cited text no. 13
    
14.
Howells D, Porritt MJ, Wong J, Batchelor P, Kalnins R, Hughes A, et al. Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra. Exp Neurol 2000;166:127-35.  Back to cited text no. 14
    
15.
Ventriglia M, Zanardini R, Bonomini C, Zanetti O, Volpe D, Pasqualetti P, et al. Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Res Int 2013;2013:901082. doi: 10.1155/2013/901082.  Back to cited text no. 15
    
16.
Văcăraş V, Major ZZ, Buzoianu AD. Brain-derived neurotrophic factor levels under chronic natalizumab treatment in multiple sclerosis. A preliminary report. Neurol Neurochir Pol 2017;51:221-6.  Back to cited text no. 16
    
17.
Nishio T, Sunohara N, Furukawa S. Neutrophin switching in spinal motoneurons of amyotrophic lateral sclerosis. Neuroreport 1998;9:1661-5.  Back to cited text no. 17
    
18.
Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001;50:260-5.  Back to cited text no. 18
    
19.
Rendeiro C, Vauzour D, Rattray M, Waffo-Téguo P, Mérillon JM, Butler LT, et al. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PloS One 2013;8:e63535. doi: 10.1371/journal.pone. 0063535.  Back to cited text no. 19
    
20.
Marinus N, Hansen D, Feys P, Meesen R, Timmermans A, Spildooren J. The Impact of different types of exercise training on peripheral blood brain-derived neurotrophic factor concentrations in older adults: A meta-analysis. Sports Med 2019;49:1529-46.  Back to cited text no. 20
    
21.
Pawełczyk T, Grancow-Grabka M, Trafalska E, Szemraj J, Żurner N, Pawełczyk A. An increase in plasma brain derived neurotrophic factor levels is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized clinical trial. Psychopharmacology 2019;236:2811-22.  Back to cited text no. 21
    
22.
Wiciński M, Malinowski B, Węclewicz MM, Grześk E, Grześk G. Resveratrol increases serum BDNF concentrations and reduces vascular smooth muscle cells contractility via a NOS-3-independent mechanism. Biomed Res Int 2017;2017:9202954. doi: 10.1155/2017/9202954.  Back to cited text no. 22
    
23.
Jafari F, Amani R, Tarrahi MJ. Effect of zinc supplementation on physical and psychological symptoms, biomarkers of inflammation, oxidative stress, and brain-derived neurotrophic factor in young women with premenstrual syndrome: A randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 2020;194:89-95.  Back to cited text no. 23
    
24.
Prakash A, Bharti K, Majeed ABA. Zinc: Indications in brain disorders. Fundam Clin Pharmacol 2015;29:131-49.  Back to cited text no. 24
    
25.
Mariani E, Mangialasche F, Feliziani F, Cecchetti R, Malavolta M, Bastiani P, et al. Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects. Exp Gerontol 2008;43:445-51.  Back to cited text no. 25
    
26.
Mousavi SM, Djafarian K, Mojtahed A, Varkaneh HK, Shab-Bidar S. The effect of zinc supplementation on plasma C-reactive protein concentrations: A systematic review and meta-analysis of randomized controlled trials. Eur J Pharmacol 2018;834:10-6.  Back to cited text no. 26
    
27.
Travaglia A, La Mendola D, Magrì A, Pietropaolo A, Nicoletti VG, Grasso G, et al. Zinc (II) interactions with brain-derived neurotrophic factor N-terminal peptide fragments: Inorganic features and biological perspectives. Inorg Chem 2013;52:11075-83.  Back to cited text no. 27
    
28.
Cochrane risk of bias tool for randomized controlled trials. Available from: Ncbi.nlm.nih.gov NBK115843 bin appe-fm2.  Back to cited text no. 28
    
29.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.  Back to cited text no. 29
    
30.
Whitehead A, Whitehead J. A general parametric approach to the meta-analysis of randomized clinical trials. Stat Med 1991;10:1665-77.  Back to cited text no. 30
    
31.
Solati Z, Jazayeri S, Tehrani-Doost M, Mahmoodianfard S, Gohari MR. Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: A double-blind, randomized, placebo-controlled trial. Nutr Neurosci 2015;18:162-8.  Back to cited text no. 31
    
32.
Kheirouri S, Naghizadeh S, Alizadeh M. Zinc supplementation does not influence serum levels of VEGF, BDNF, and NGF in diabetic retinopathy patients: A randomized controlled clinical trial. Nutr Neurosci 2019;22:718-24.  Back to cited text no. 32
    
33.
Ranjbar E, Shams J, Sabetkasaei M, M-Shirazi M, Rashidkhani B, Mostafavi A, et al. Effects of zinc supplementation on efficacy of antidepressant therapy, inflammatory cytokines, and brain-derived neurotrophic factor in patients with major depression. Nutr Neurosci 2014;17:65-71.  Back to cited text no. 33
    
34.
Toh YL, Ng T, Tan M, Tan A, Chan A. Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: A systematic review. Brain Behav 2018;8:e01009. doi: 10.1002/brb3.1009.  Back to cited text no. 34
    
35.
Fernandes BS, Molendijk ML, Köhler CA, Soares JC, Leite CMG, Machado-Vieira R, et al. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies. BMC Med 2015;13:289.  Back to cited text no. 35
    
36.
Salas-Magaña M, Tovilla-Zárate CA, González-Castro TB, Juárez-Rojop IE, López-Narváez ML, Rodríguez-Pérez JM, et al. Decrease in brain-derived neurotrophic factor at plasma level but not in serum concentrations in suicide behavior: A systematic review and meta-analysis. Brain Behav 2017;7:e00706. doi: 10.1002/brb3.706.  Back to cited text no. 36
    
37.
Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC-M. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with alzheimer's disease (AD): A systematic review and meta-analysis. Int J Mol Sci 2019;20:257.  Back to cited text no. 37
    
38.
Rahmani F, Saghazadeh A, Rahmani M, Teixeira AL, Rezaei N, Aghamollaii V, et al. Plasma levels of brain-derived neurotrophic factor in patients with Parkinson disease: A systematic review and meta-analysis. Brain Res 2019;1704:127-36.  Back to cited text no. 38
    
39.
Toll A, Mané A. Brain-derived neurotrophic factor levels in first episode of psychosis: A systematic review. World J Psychiatry 2015;5:154-9.  Back to cited text no. 39
    
40.
Cui H, Jin Y, Wang J, Weng X, Li C. Serum brain-derived neurotrophic factor (BDNF) levels in schizophrenia: A systematic review. Shanghai Arch Psychiatry 2012;24:250-61.  Back to cited text no. 40
    
41.
Bora E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: A meta-analysis. Psychol Med 2019;49:1971-9.  Back to cited text no. 41
    
42.
Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res 2015;60:56-64.  Back to cited text no. 42
    
43.
Neshatdoust S, Saunders C, Castle SM, Vauzour D, Williams C, Butler L, et al. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: Two randomised, controlled trials. Nutr Healthy Aging 2016;4:81-93.  Back to cited text no. 43
    
44.
Sechi S, Chiavolelli F, Spissu N, Di Cerbo A, Canello S, Guidetti G, et al. An antioxidant dietary supplement improves brain-derived neurotrophic factor levels in serum of aged dogs: Preliminary results. J Vet Med 2015;2015:412501. doi: 10.1155/2015/412501.  Back to cited text no. 44
    
45.
Corona C, Masciopinto F, Silvestri E, Viscovo AD, Lattanzio R, Sorda RL, et al. Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction. Cell Death Dis 2010;1:e91. doi: 10.1038/cddis. 2010.73.  Back to cited text no. 45
    
46.
Huang YZ, Pan E, Xiong Z-Q, McNamara JO. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 2008;57:546-58.  Back to cited text no. 46
    
47.
McMurphy T, Huang W, Liu X, Siu JJ, Queen NJ, Xiao R, et al. Hypothalamic gene transfer of BDNF promotes healthy aging in mice. Aging Cell 2019;18:e12846.  Back to cited text no. 47
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Methods
Results
Search results
Discussion
Conclusions
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed650    
    Printed34    
    Emailed0    
    PDF Downloaded60    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]